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Notation

Let X be a random variable (for example continuous), with X ∼ fX (x), X ∈ X
(fX (x) pdf).

Then

E[X ] =

∫
X

x fX (x)dx

and

V[X ] =

∫
X

(x − E[X ])2 fX (x)dx

Let Y = h(X ), Y ∈ Y. If Y ∼ fY (y). Then

E[Y ] =

∫
Y
y fY (x)dx .

We can prove that

E[Y ] = EX [h(X )] =

∫
X

h(x)fX (x)dx

Thus
V[X ] = EX [(X − E[X ])2]

We also can prove that
V[X ] = EX [X

2]− E[X ]2

When needed we will use the notation EX , or Ef equivalently, where f is the pdf

of X , to explicitly state that the mean is w.r.t. the pdf f of X .
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Introduction

Whatever you would like to know about a distribution can be
achieved simply by simulating random values from it.

E.g. f (x) pdf, X ∼ f (x), X ∈ X .

µ = E[X ] =?, σ =
√
V[X ] =?, p = P(X > 2) =?, Graph?

Let X1, . . .Xn be i.i.d. r.v.’s from f (x). Then,

µ̂ =
1

n

n∑
i=1

Xi = X̄ , σ̂ =

√√√√ 1

n − 1

n∑
i=1

(Xi − X̄ )2, p̂ =
1

n

n∑
i=1

1{Xi>2},

Graph → Kernel

In general, EX [h(X )] =
∫
X h(x)f (x)dx → 1

n

∑n
i=1 h(Xi )

→ Monte Carlo Integration

The above idea is used often in Bayesian statistics for computing
integrals of the posterior (MCMC)
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Theoretical Justification for Monte Carlo Integration

Theorem (Strong Law of Large Numbers)

If X1, . . .Xn are i.i.d. r.v.’s from f (x) with EX [|h(X )|] < +∞ then
1
n

∑n
i=1 h(Xi ) → EX [h(X )] a.s.
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Introduction (cont’d)

Q: HOW DO WE SIMULATE R.V.’S from f (x)?

Samples should be generated in proportion to the height (density) of
the pdf f .
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Introduction (cont’d)

Statistical packages generate from known distributions and
especially from the uniform (0, 1).

All algorithms we are going to see begin with U1,U2 . . .Un ∼ U[0, 1].

xn+1 = (axn + b)modm, n = 0, 1, 2, . . .

where x0 (:seed), m (:modulus), b (:increment), a (:multiplier)
non-negative integers with x0, b, a ∈ {0, 1, . . .m − 1}. In this way,
we create a class of ”generators” of numbers
x0, x1, . . . ∈ {0, 1, . . .m − 1}. Then,

un =
xn
m

∈ [0, 1)

For large m and “appropriate” x0, b, a → ui ∼ U[0, 1]
(pseudo-random).

If U ∼ U(0, 1) then (β − α)U + α ∼ U(α, β) (inversion method)
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Inversion Method

We would like to generate X ∼ F (x) (cdf) and assume that the
inverse function F−1(u) is well defined for 0 ≤ u ≤ 1. If U ∼ U[0, 1]
then X = F−1(U) has the desired distribution. Indeed:

P[X ≤ x ] = P[F−1(U) ≤ x ] = P[U ≤ F (x)] = F (x)

(since U ∼ U[0, 1] → FU(u) = u)

If X is discrete the above methodology needs to be modified,
defining

F−1(u) = min{x : F (x) ≥ u}

e.g. Consider we would like to simulate X = ↗ 1 prob p

↘ 0 prob 1− p
.

We generate U ∼ U[0, 1] and if U ≥ 1− p, we set X = 1 else
X = 0. (more about discrete r.v.’s later)
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Inversion Method: Examples

1 X ∼ Exp(λ), f (x) = λe−λx , F (x) = 1− e−λx , (x , λ > 0)

We set X = F−1(U), i.e. U = 1− e−λX ⇒ X = −λ−1 log(1− U)

But (1− U) ≡ U ∼ U[0, 1]. Thus,
i. U ∼ U[0, 1]
ii. X = −λ−1 log(U)
iii. X ∼ Exp(λ)

2 X ∼ Cauchy, f (x) = 1
π(1+x2)

, x ∈ R

F (x) =

∫ x

−∞

1

π(1 + s2)
ds = 1/2 + π−1 arctan x = u

⇒ F−1(u) = tan(π(u − 1/2))

Thus,
i. U ∼ U[0, 1]
ii. X = tan(π(U − 1/2))
iii. X ∼ Cauchy

3 X ∼ N (0, 1) with cdf Φ(x).

Φ(x) =

∫ x

−∞

1

2π
e−2s2ds = u ⇒ Φ−1(u) =?

The requirement of the existence of the inverse is an Important Limitation
of the method.
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Inversion Method: Illustration

We generate random numbers ui from U(0, 1) (y -axis). Each of the
points is mapped according to x = F−1(u) (gray arrows). We use the
exponential distribution with pdf f (x) = λe−λx and cdf
F (x) = 1− e−λx . The mean is equal to µ = 1/λ, the standard deviation
is σ = 1/λ and thus µ+ σ = 2/λ.
We can see that using this method, many points end up close to 0 and
only few points end up having high x-values - just as it is expected for an
exponential distribution.
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Inversion Method: Truncated Distributions

Let X ∼ f (x) (f is a pdf) and F be the corresponding cdf, with inverse
(quantile function) F−1. Let t denote the pdf of the truncated f
distribution on [a, b] and T denote the corresponding cdf.
Then

t(x) =

{
f (x)

F (b)−F (a) x ∈ [a, b]

0 else

and

T (x) =


1 x > b
F (x)−F (a)
F (b)−F (a) x ∈ [a, b]

0 x < a

Thus T−1(u) = F−1 [F (a) + u(F (b)− F (a))]
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Rejection Sampling

Imagine we would like to generate X ∼ f (x) (f is a pdf) but this is hard
while at the same time we could easily get Y ∼ g(y) (proposal
distribution) for which we could find an M ≥ 1:

f (x) ≤ Mg(x) ≡ G (x) (envelope− also denoted by e(x)),

for all x for which f (x) > 0.

Algorithm

1. Generate Y ∼ g(y) and set y = Y

2. Generate U ∼ U(0, 1) and set u = U

3. If u ≤ f (y)
Mg(y) then X = y else go back to Step 1.

This algorithm gives a way to generate randomly within the area under
the curve G = Mg . We only accept those points that fall under f . This

can be seen from the condition u ≤ f (y)
Mg(y) ⇔ Mg(y)u ≤ f (y), where

Mg(y)u is a random point under Mg .
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Rejection Sampling: Illustration

Let e(x) ≡ G (x) = Mg(x) denote the envelope
y ∼ g , g proposal

u ∼ U(0, 1) and keep y if u ≤ f (y)
Mg(y) ⇒

⇒ u′ = (u|y) ≡ Mg(y)u ∼ U(0, e(y)) and keep if u′ < f (y).
Suppose y falls at the point indicated by the figure. Then imagine
sampling u′ uniformly along the vertical bar. The rejection rule eliminates
the y value with probability proportional to the length of the bar above
f (y) relative to the overall bar length.
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Rejection sampling: Proof

Why would this give values from f ?

It suffices to show that the cdf of X that we accept with the algorithm is
F (y) =

∫ y

−∞ f (z)dz .

Indeed,

P[X ≤ y ] = P
[
Y ≤ y |U ≤ f (Y )

G (Y )

]
=

P
[
Y ≤ y ,U ≤ f (Y )

G(Y )

]
P
[
U ≤ f (Y )

G(Y )

]
=

∫ y

−∞
∫ f (z)/G(z)

0
dug(z)dz∫∞

−∞
∫ f (z)/G(z)

0
dug(z)dz

=

∫ y

−∞ f (z)/G (z)g(z)dz∫∞
−∞ f (z)/G (z)g(z)dz

=
1
M

∫ y

−∞ f (z)dz
1
M

∫∞
−∞ f (z)dz

=

∫ y

−∞
f (z)dz = F (y) .
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Rejection sampling (cont’d)

How many trials (on average) do we need till we accept the value X = y
at Step 3?

P[accept the value X = y ] =

∫ ∞

−∞

f (y)

G (y)
g(y)dy = 1/M .

↓
from every y ∼ g we only accept those with prob f (y)/G(y)

Thus, in order to achieve high acceptance probability, M should be as
small as possible (closer to 1). From the graph on p. 12, we also see that
the closer G is to f , the higher the acceptance probability will be. Thus,
the smaller the M, the closer G to f . In general, the better g mimicks
the shape of f , the smaller the value of M required to find G covering f .
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Adaptive Rejection Sampling

If f ≡ p is log-concave (i.e. its logarithm is a concave function
(d2 log f (x)/dx2 < 0) – most distributions are) then one way of
choosing G is to draw tangents at each side of the maximum.

Adaptive rejection sampling: choose x1, x2 yielding small rejection
probability or draw more tangents.
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Adaptive Rejection Sampling (cont’d)

These piecewise linear proposals on the log scale result in a set of
piecewise exponential proposal distributions on the original scale.

We can easily simulate values from exponential distributions, using
the inversion method (and a stratified sampling method):

1 Sample from multinomial distribution to determine the “piece”.
2 Sample from the truncated exponential distribution.
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Remarks on Rejection Sampling

If we do not want to do adaptive rejection sampling then choosing g
is art. We usually choose g with the same support as f being easy
to simulate values from and mimicking f as much as possible. In
general, almost always we can find a pdf g and M > 1: f ≤ Mg
unless f is not bounded or its tails are very heavy (e.g. f : Cauchy,
g : Normal → ∄M : f (x)/g(x) ≤ M ∀x)
If we know f up to a normalizing constant c , that is we have
f ∗(x) = f (x)/c (Bayesian Statistics) then we can work with f ∗(x)
without a problem. The envelope then is G (y) ≥ f ∗(y) and
u ≤ f ∗(y)/G (y). Finally, the probability to accept X at step 3

becomes 1/cM.
(
e.g. f (x) ∼ Beta(a, b), f ∗(x) = (1− x)b−1xa−1

)
As we saw before, M should be the smallest possible provided that
G covers f , for all x : f (x) > 0:

f ≤ Mg ⇒ M ≥ f /g ⇒ M = max
y

f (y)

g(y)
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Rejection Sampling: Example

Assume we want X ∼ Beta(a, b)

f (x) =
Γ(a+ b)

Γ(a)Γ(b)
(1− x)b−1xa−1 ∝ xa−1(1− x)b−1 ≡ f ∗(x), x ∈ (0, 1)

Let a, b > 1 (these values ensure concavity). It is easier to work with f ∗

in the place of f . Then,

i) Choice of g ≡ U(0, 1) (g has the same support with f ).

ii) Find M so that M = max f ∗

g . But,

f ∗(x)

g(x)
= xa−1(1− x)b−1

d

dx

(
f ∗(x)

g(x)

)
= 0 ⇒ x =

a− 1

a+ b − 2

Thus,
f ∗

g
≤ (a− 1)a−1(b − 1)b−1

(a+ b − 2)a+b−2
= M
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Rejection Sampling: Example II

Suppose we want X ∼ N (0, 1), i.e. fX (x) =
1√
2π
e−

x2

2 .

It is easy to generate samples from a double exponential distribution with
density g(x) = 1

2e
−|x|.

Indeed, if E ∼exp(1) and S ∼ Uniform{−1,+1}, then Y = SE has
density g .

It is easy to check that

fX (x)

g(x)
=

√
2e

π
e−

1
2 (|x|−1)2 ≤

√
2e

π
= M (≃ 1.3155)

The algorithm for generating samples of X from samples of Y is as
follows

REPEAT
draw a sample y from density g .
draw a sample u form Uniform(0,1)

UNTIL u ≤ e−
1
2 (|y |−1)2

RETURN y
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Squeezed Rejection Sampling

If computing f is time-consuming then the method becomes slow since at
every step we need to compute f (y). Let e(x) ≡ G (x) = Mg(x) denote
the envelope and s a (squeezing) function: f (y) ≥ s(y) ≥ 0 ∀y , which
does not take time to compute. Then,
1. Generate Y ∼ g(y) and set y = Y
2. Generate U ∼ U(0, 1) and set u = U

3. If u ≤ s(y)
G(y) then X = y

else if u ≤ f (y)
G(y) then X = y

else go back to Step 1.

For a given Y = y , the total acceptance probability is f (y)
G(y) like in the

rejection sampling method, while 1
M remains the probability to accept

some X = y . Finally, the proportion of repetitions where we avoid

computing f is
∫ ∞
−∞ s(x)dx∫ ∞
−∞ G(x)dx

.
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Methods of generation from Standard Normal
Distribution

A. Box-Müller
Let 2 standard normal N1(0, 1),N2(0, 1) that generate two independent
values N1,N2 respectively. In this way, a point is defined in the
two-dimensional space with Cartesian coordinates and if we would like to
transform to polar coordinates then N1 = R cos(Θ),N2 = R sin(Θ). It
can be shown (see Appendix 1) that R and Θ are independent r.v.’s with
Θ ∼ U(0, 2π) and R2 = N2

1 + N2
2 ∼ X 2

2 ≡ Exp(1/2). To generate Θ, we
simply generate U2 ∼ U(0, 1) and set Θ = 2πU2, while to generate R we
set R = (−2 lnU1)

1/2 (U1 ∼ U(0, 1) - inversion method). Consequently,
the method generates polar coordinates and afterwards transforms in
Cartesian coordinates N1,N2. For each pair of values of the normal
distribution, two independent values U1,U2 ∼ U[0, 1] are required as well
as the computation of trigonometric functions. If a large sample is
necessary, then the computation of trigonometric functions has a
negative effect on the efficiency of the algorithm, so we use the
Polar-Marsaglia method.

Note: If Z ∼ N (0, 1) then X = σZ + µ ∼ N (µ, σ2)
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Methods of generation from Standard Normal
Distribution (cont’d)

B. Polar-Marsaglia
The idea is based on the construction of sines and cosines of uniformly
distributed angles without having to simulate the angles! This is achieved
with the rejection sampling method as follows:

U1,U2 ∼ U(0, 1) and Vi = 2Ui − 1 ⇒ Vi ∼ U(−1, 1) (i = 1, 2) .

Thus, (V1,V2) corresponds to a random pair inside a square of side 2 and
center (0, 0). We continue to generate such pairs (V1,V2), (V3,V4), . . .
till V 2

i +V 2
i+1 < 1, i.e. till the point belongs to the unit circle with center

(0, 0) (rejection sampling method: the pairs are rejected with probability
1− π/4).
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Methods of generation from Standard Normal
Distribution (cont’d)

Then, we set
R2 = V 2

1 + V 2
2 , tanΘ = V2/V1.

It can be shown that R2 ∼ U(0, 1) and Θ ∼ U(0, 2π) and they are
independent r.v.’s. Thus, the pair (R,Θ) is what is required for the
Box-Müller method and we can write:

sinΘ = V2(V
2
1 + V 2

2 )
−1/2, cosΘ = V1(V

2
1 + V 2

2 )
−1/2

Thus,
N1 = (−2 ln(R2))1/2V1(V

2
1 + V 2

2 )
−1/2

N2 = (−2 ln(R2))1/2V2(V
2
1 + V 2

2 )
−1/2

or equivalently

N1 = (−2 ln(V 2
1 + V 2

2 ))
1/2V1(V

2
1 + V 2

2 )
−1/2

N2 = (−2 ln(V 2
1 + V 2

2 ))
1/2V2(V

2
1 + V 2

2 )
−1/2

yielding

N1 = V1

(
−2 lnW

W

)1/2

, N2 = V2

(
−2 lnW

W

)1/2

where W = V 2
1 + V 2

2 .
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Discrete Random Variables

Let X be a discrete r.v. with values i = 1, 2, . . . n.

If f (i) = P[X = i ] = pi is the pmf and F (i) = P[X ≤ i ] =
∑

j≤i pj = Pi

the cdf of the r.v. X then

F−1(u) = min(x |F (x) ≥ u) = i , if Pi−1 < u ≤ Pi

where P0 = 0 and Pn = 1.
Thus,

i) We simulate U ∼ U(0, 1) and set u=U

ii) We set i = 1

iii) If Pi ≤ u then i → i + 1 and repeat iii), else X = i
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Example (Inversion method on discrete)

Flip a fair coin 3 times and X : #heads + 1

X discrete (i = 1, 2, 3, 4)

f (x) =


1/8 x = 1 → p1
3/8 x = 2 → p2
3/8 x = 3 → p3
1/8 x = 4 → p4

F (x) =


0 x < 0 → P0 = 0
1/8 0 ≤ x < 1 → P1 = 1/8
3/8 1 ≤ x < 2 → P2 = 4/8
3/8 2 ≤ x < 3 → P3 = 7/8
1/8 3 ≤ x → P4 = 1

u ∼ U(0, 1)
ex1. 0.43, i = 1 ex2. 0.77, i = 1
P1 ≤ u → i = 2 P1 ≤ u → i = 2
P2�≤u → X=2 P2 ≤ u → i = 3

P3�≤u → X=3
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Mixture Representations

Sometimes probability distributions can be naturally represented as a
mixture distribution, i.e.

fX (x) =

∫
Y
fX |Y (x |y)fY (y)dy

or

fX (x) =
∑
i∈Y

pi fi (x),

depending on whether the auxiliary space Y is continuous or
discrete. In the above expressions fX |Y (x |y), fY (y) are pdfs,
fi (x), i ∈ Y are pdfs or pmfs (of the same or of different types) and
pi , i ∈ Y are probabilities such that

∑
i∈Y pi = 1 (therefore we have

a discrete r.v. γ ∈ Y with pmf p, such that P(γ = i) = pi , i ∈ Y).

To generate a r.v. X using such a representation, we can first
generate a variable Y from the mixing distribution and then
generate X from the selected conditional distribution (given the
generated y value).
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Mixture Representations (cont’d)

Therefore:

If Y ∼ fy (y) and X |Y ∼ fX |Y (x |y), then X ∼ fX (x) (continuous
case).
If γ ∼ p and X ∼ fγ(x), then X ∼ fX (x) (discrete case).

Example (discrete case) - Mixtures of Normals:

fX (x) =
1

3
N(0, 1) +

2

3
N(1, 1)

Simulate γ ∼ Bernoulli(1/3). If γ = 1 then X ∼ N(0, 1), if γ = 0
then X ∼ N(1, 1).

Example (continuous case): The Student’s density Tν , with ν
degrees of freedom, can be written as a mixture:

X |y ∼ N(0, ν/y) and Y ∼ X 2
ν

Therefore to generate a r.v. from Tν , we generate Y ∼ X 2
ν (call the

value y) and then X ∼ N(0, ν/y).
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Special Cases

i) Cauchy:
If N1 and N2 independent r.v.’s following N(0,1), then
X = N1/N2 ∼ Cauchy.

ii) Γ(n, θ), n ∈ N, θ > 0:
If X1, . . . ,Xn iid sample from Exp(θ) then X =

∑n
i=1 Xi ∼ Γ(n, θ).

iii) X 2
n :

If Z ∼ N(0, 1), then Z 2 ∼ X 2
1 . If X1, . . . ,Xn iid sample from X 2

1

then X =
∑n

i=1 Xi ∼ X 2
n .

iv) Beta(p, q):
If Y ∼ Γ(p, θ) and Z ∼ Γ(q, θ), then Y

Y+Z ∼ Beta(p, q)
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Special Cases (cont’d)

v) Poisson(µ), µ ≤ 30:

Set P = 1,N = 0, c = e−µ

Repeat: simulate Ui ∼ U(0, 1),P = PUi ,N = N + 1 till P < c
X = N − 1 ∼ P(µ)

vi) Geometric:
Let Y ∼ Exp(λ),X = int[Y ] (i.e. the largest integer ≤ Y ). Then,

P[X = r ] = P[r ≤ Y ≤ r + 1] = e−λr − e−λ(r+1) = e−λr (1− e−λ)

i.e. X ∼ Ge(p = 1− e−λ). Thus, for λ = log(1/(1− p)) we
simulate from Ge(p).

vii) Negative Binomial:
X |y ∼ Poisson(y) and Y ∼ Gamma(n, β) ⇒ X ∼ NB(n, p), where
β = (1− p)/p

vii) t-distribution: Tν = N (0,1)√
X 2
ν/ν

(equivalent to the mixture

representation we have seen before)

viii) F-distribution: F (m, n) =
X 2
m/m

X 2
n /n
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R functions

runif(n,par1,par2)

rnorm(n,par1,par2)
↓
sd

rgamma(n,shape,rate) (f (x) = ap

Γ(p)x
p−1e−ax)

↓ ↓
p a

rbeta(n,shape1,shape2)
↓ ↓
a b

rcauchy(n,par1,par2)
↓ ↓
0 1

rf(n,par1,par2)

rt(n,par1,par2)
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Variance Reduction Techniques

Let X ∼ f (x), X ∈ X (f : pdf) and assume that the value
θ = EX [ϕ(X )] =

∫
X ϕ(x)f (x)dx is unknown. Let X1, . . .Xn be a random

sample from f . According to Monte Carlo integration we have:

θ̂ =
1

n

n∑
i=1

ϕ(Xi ) .

Then,

E[θ̂] = n−1
n∑

i=1

EXi [ϕ(Xi )] = n−1nEX [ϕ(X )] =

∫
X
ϕ(x)f (x)dx = θ

and

V[θ̂] = n−2
n∑

i=1

VX [ϕ(X )] = n−1

∫
X
[ϕ(x)− θ]2f (x)dx =

c

n

where c : constant. Thus, θ̂ is an unbiased estimator of θ with s.e.
proportional to 1/

√
n, thus θ̂ is a consistent estimator of θ. Let us call

the current method ϕ-f. (Monte-Carlo integration or parametric
Bootstrap).
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Variance Reduction Techniques (cont’d)

It is clear that different choices of f and ϕ yield different constants c .

e.g. let θ =
∫∞
2

1
π

1
1+x2 dx which is equal to P[X > 2] when X ∼ Cauchy

(symmetric around zero)

i)

f (x) =
1

π(1 + x2)
, ϕ(x) = 1{x>2} = ↗ 1, x > 2

↘ 0, x ≤ 2

ii)

θ =
1

2
P[|X | > 2], f (x) =

1

π(1 + x2)
, ϕ(x) = 1{|x|>2}

iii)

1− 2θ =

∫ 2

−2

1

π(1 + x2)
dx = 2

∫ 2

0

1

π(1 + x2)
dx

f (x) =
1

2
, x ∈ [0, 2] (i .e. U(0, 2)), ϕ(x) =

2

π(1 + x2)
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Method of Control Variates

Let X ∼ f (x), X ∈ X (f : pdf) and assume that the value
θ = EX [ϕ(X )] =

∫
X ϕ(x)f (x)dx is unknown. Let X1, . . .Xn be a random

sample from f . According to Monte Carlo integration we have that

δ1 =
1

n

n∑
i=1

ϕ(Xi )

is an unbiased estimator of θ.
In some settings, there exist functions ϕ0 whose mean under f is known.
For instance, if f is symmetric around its mean µ, the mean of
ϕ0(X ) = 1{X≥µ} is 1/2. Let’s suppose we simulate i.i.d. sample
ϕ0(X1), . . . ϕ0(Xn) and

δ3 =
1

n

n∑
i=1

ϕ0(Xi )

is the Monte Carlo unbiased estimator of EX [ϕ0(X )].
Define the new unbiased estimator of θ:

δ2 =
1

n

n∑
i=1

[ϕ(Xi )− b ϕ0(Xi )] + bEX [ϕ0(X )].
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Method of Control Variates (cont’d)

Goal: Choose b to make the variance of δ2 smaller.

VX [ϕ(X )− b ϕ0(X ) + bEX [ϕ0(X )]] = VX [ϕ(X )− b ϕ0(X )] =

VX [ϕ(X )] + b2 VX [ϕ0(X )]− 2b Cov [ϕ(X ), ϕ0(X )]

This is minimised when b = Cov[ϕ(X ),ϕ0(X )]
VX [ϕ0(X )] and the minimum variance

achieved is VX [ϕ(X )]
(
1− ρ2ϕ(X ),ϕ0(X )

)
. Thus

VX [δ3] = VX [δ1]
(
1− ρ2ϕ(X ),ϕ0(X )

)
.

Caveat 1: The reduction in variance comes with increase in simulation
time, since we also need to simulate ϕ0(X ). Suppose we need time τ to
sample from X and time λτ to sample from ϕ0(X ). In the time needed
to draw n samples from X , we can only draw n/(1 + λ) samples of the
pair (X , ϕ0(X )). Hence, a fair comparison would be between

VX [ϕ(X )]

n
and VX [ϕ(X )]

(
1− ρ2ϕ(X ),ϕ0(X )

)
× 1 + λ

n

The more correlated ϕ(X ) and ϕ0(X ) are, the more advantageous it is to
use ϕ0(X ) as a control variate.
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Method of Control Variates (cont’d)

Caveat 2: The optimal b = Cov[ϕ(X ),ϕ0(X )]
VX [ϕ0(X )] requires knowledge of

Cov [ϕ(X ), ϕ0(X )], which is not very realistic, considering we do not even
know EX [ϕ(X )].

Remedy: Use an estimator of the optimal b, i.e.,

b̂n =

∑n
i=1(ϕ(Xi )− δ1)(ϕ0(Xi )− δ3)∑n

i=1(ϕ0(Xi )− δ3)2
.

In this case, the new Monte Carlo estimator becomes

δ2 =
n∑

i=1

(1
n
+

(δ3 − ϕ0(Xi )) (δ3 − EX [ϕ0(X )])∑n
i=1(ϕ0(Xi )− δ3)2︸ ︷︷ ︸

correction term

)
ϕ(Xi ).
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Example on Control Variates

We wish to find the value of the following integral (true value is
log 2 = 0.69314718):

θ =

∫ 1

0

1

1 + x
dx

This integral is the expected value of ϕ(X ) = 1
1+X , with X ∼ U(0, 1).

Standard Monte-Carlo Method

Take a sample of let’s say n = 1500 U(0, 1) variates X1, . . .X1500

and take δ1 =
1
n

∑n
i=1 ϕ(xi ).

Control Variates

Let ϕ0(X ) = 1 + X ∼ U(1, 2). Then

EX [ϕ0(X )] =

∫ 1

0

(1 + x)dx =
3

2
.

Let

δ2 =
1

n

n∑
i=1

[ϕ(Xi )− b ϕ0(Xi )] + b
3

2
,

The estimated optimal b̂n = −0.47. Then δ1 = 0.69475 with
variance = 0.01947 & δ2 = 0.69295 with variance = 0.00060.
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Method “hit and miss”

Let ϕ(x), x ∈ [a, b] be a bounded function 0 ≤ ϕ(x) ≤ c and we want to
compute the area under ϕ, i.e.

Y =

∫ b

a

ϕ(x)dx = (b − a)

∫ b

a

ϕ(x)f (x)dx , f (x) =
1

b − a
, x ∈ [a, b]

Thus f (x) denotes the pdf of U(a, b). The method generates points
randomly inside the rectangle defined by the points (a, 0), (b, 0), (a, c),
(b, c) and estimates Y by the relative frequency of the points that fall
under ϕ(x).
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Method “hit and miss” (cont’d)

More specifically, let Ui ∼ U(a, b) and Vi ∼ U(0, c), i = 1, 2 . . . n
(independent r.v.’s). We thus create a random sample of size n in the
rectangle enclosing ϕ. Then we estimate Y by

Ỹ
see
=

Appendix 2
c(b − a)

1

n

n∑
i=1

1{Vi≤ϕ(Ui )}

rectangle area relative frequency of points under ϕ(x)

E[Ỹ ]
Vi & Ui i.i.d.=

call them V & U
c(b − a)

1

n
nE

[
1{V≤ϕ(U)}

]
= c(b − a)P [V ≤ ϕ(U)] ,

since 1{V≤ϕ(U)} ∼ Bernoulli(P [V ≤ ϕ(U)]). Furthermore, V ∼ U(0, c)
and U ∼ U(a, b). Thus:

E[Ỹ ]
see
=

Appendix 3
c(b − a)

∫ b

a
ϕ(x)dx

c(b − a)
=

∫ b

a

ϕ(x)dx = Y
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Method “hit and miss” (cont’d)

Additionally

V[Ỹ ] = c2(b − a)2
1

n2
nV

[
1{V≤ϕ(U)}

]
= c2(b − a)2

1

n
{P [V ≤ ϕ(U)] (1− P [V ≤ ϕ(U)])}

=
c2(b − a)2

n

[
Y

c(b − a)

(
1− Y

c(b − a)

)]
=

1

n
Y [c(b − a)− Y ] .
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Method “hit and miss” (cont’d)

With the “ϕ-f” method, we have respectively:
Ŷ = (b − a) 1

n

∑n
i=1 ϕ(Xi ), Xi ∼ U(a, b)

E[Ŷ ] = Y

V[Ŷ ] = (b − a)2
1

n2
nVX [ϕ(X )] =

(b − a)2

n

{
EX

[
(ϕ2(X ))

]
− E2

X [ϕ(X )]
}

=
(b − a)2

n

{∫ b

a

ϕ2(x)

b − a
dx −

[∫ b

a

ϕ(x)

b − a
dx

]2
}

=
(b − a)2

n

{∫ b

a

ϕ2(x)

b − a
dx − Y 2

(b − a)2

}
c≥ϕ(x)

≤
cϕ(x)≥ϕ2(x)

(b − a)2

n

{
c

∫ b

a

ϕ(x)

b − a
dx − Y 2

(b − a)2

}
=

1

n
[c(b − a)Y − Y 2] = V[Ỹ ]

Thus, “hit and miss” is worse than “ϕ-f” (has larger variance).
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Antithetic R.V.’s

Assume that θ̂1, θ̂2 are 2 unbiased estimators of θ with variances V[θ̂1]
and V[θ̂2] respectively. Let θ̂ = 1

2 (θ̂1 + θ̂2). Then, E[θ̂] = θ and

V
[
1

2
(θ̂1 + θ̂2)

]
=

1

4
V[θ̂1] +

1

4
V[θ̂2] +

1

2
Cov(θ̂1, θ̂2)

If further V[θ̂1] = V[θ̂2] then

V
[
1

2
(θ̂1 + θ̂2)

]
=

1

2
V[θ̂1] +

1

2
Cov(θ̂1, θ̂2)

=
1

2
V[θ̂1](1 + Corr(θ̂1, θ̂2))

Consequently, if Corr(θ̂1, θ̂2) is negative (thus θ̂1, θ̂2 are antithetic r.v.’s
(same distribution but negatively correlated)) then V[θ̂] ≤ 1

2V[θ̂1].
Assuming we roughly need double the time now to generate both θ̂1 and
θ̂2, this is an overall reduction of variance in the same computational
time.
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Antithetic R.V.’s (cont’d)

In the standard Monte Carlo setting, when θ̂1 =
1
n

∑n
i=1 f (Xi ), where

{Xi}i∈{1,....,n} are i.i.d. r.v.’s. antithetic random variables can be used
when the distribution of X has some symmetry: R(X ) ∼ X , for some
transformation R.

θ̂2 =
1

n

n∑
i=1

f
(
R(Xi )

)
If Cov

(
X ,R(X )

)
< 0, using R(X ) as an antithetic variable reduces

variance to a certain extent.

A typical example is to take R(X ) = −X , when the distribution of X is
symmetric around zero, as the next example shows.
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Example on Antithetic R.V.’s

θ =

∫ ∞

−∞

x

2x − 1

1√
2π

e−x2/2dx

↓ ↓
ϕ f

Standard Monte-Carlo Method

Take a sample of let’s say n = 1000 N (0, 1) variates X1, . . .X1000

and take θ̂MC = 1
n

∑n
i=1 ϕ(xi ).

Antithetic sample

θ̂AS = 1
n

∑500
i=1 [ϕ(xi ) + ϕ(−xi )]

Ĉorr{ϕ(xi ), ϕ(−xi )} = −0.95, i = 1, . . . 500

θ̂MC = 1.4993 → s.e. = 0.016

θ̂AS = 1.4992 → s.e. = 0.0035
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Importance Sampling

Let X ∼ f (x), (f : pdf) and X ∈ X . Like before we would like to estimate

θ =

∫
X
ϕ(x)f (x)dx =

∫
X
h(x)dx = Ef [ϕ(X )]

Let g be another pdf that is strictly positive when h(x) = ϕ(x)f (x) is

different from zero, for x ∈ X . Let ψ(x) = ϕ(x)f (x)
g(x) , x ∈ X . Then,

θ =

∫
X

ϕ(x)f (x)

g(x)
g(x)dx = Eg [ψ(X )]

Therefore we either generate a sample from f and estimate θ from
1
n

∑n
i=1 ϕ(Xi ) = θ̂f (ϕ-f method) or we generate a sample from g and

estimate θ from 1
n

∑n
i=1 ψ(Xi ) = θ̂g .

E[θ̂g ] =
1

n
Eg

[
n∑

i=1

ψ(Xi )

]
= Eg [ψ(X )] = θ, i.e. unbiased
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Importance Sampling (cont’d)

V[θ̂g ] =
1

n

∫
X
[ψ(x)− θ]2g(x)dx =

1

n

∫
X
[ϕ(x)f (x)/g(x)− θ]2g(x)dx

=
1

n

∫
X
[h(x)/g(x)− θ]2g(x)dx =

1

n
Vg

[
h(X )

g(X )

]
.

Thus, the variance of θ̂g becomes zero when h(x)
g(x) = θ, x ∈ X , but since

this requires apriori knowledge of θ, we choose g to make ϕ(x)f (x)/g(x)
nearly constant. We can show that V[θ̂g ] is minimized by
g(x) ∝ |ϕ(x)f (x)| ≡ |h(x)|. For this reason, the method is good when
g(x) ∝ |ϕ(x)f (x)|, x ∈ X .
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Importance Sampling: Example

Let X be a random variable in R following the Cauchy distribution. We
would like to estimate

θ = P[X > 2] =

∫ ∞

2

1

π

1

1 + x2
dx .

We choose g(x) = 2/x2, x ∈ (2,∞) → g > 0. The function g is
mimicking the Cauchy shape in (2,∞) and further∫ ∞

2

2

x2
dx =

−2

x

∣∣∣∞
2

= 1 → g is a pdf in (2,∞)
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Importance Sampling: Example (cont’d)

We can simulate values from g with the inversion method:

G (x) =

∫ x

2

2

t2
dt = 1− 2

x
= 1− u ⇒ x =

2

u

Thus U ∼ U(0, 1) ⇒ 1− U ∼ U(0, 1) ⇒ X = 2/U ∼ g . Note also
that X−1 ∼ U(0, 1/2). So:

θ =

∫ ∞

2

1

π

1

1 + x2
dx =

∫ ∞

2

x2

2π(1 + x2)

2

x2
dx

= Eg

[
X 2

2π(1 + X 2)

]
=

∫ ∞

2

1

π

1

1 + x2
dx

x2=y−2

=
inversion method∫ 1/2

0

y−2

π(1 + y−2)
dy =

∫ 1/2

0

1

π(1 + y2)
dy = Eh

[
1

2π(1 + X 2)

]
,

where h(x) = 2, x ∈ (0, 1/2), i.e. the pdf of the U(0, 1/2).
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Importance Sampling: Exercise

Let X be a random variable in R following the Cauchy distribution
(symmetric around zero). We would like to estimate

θ = P[X > 2] =

∫ ∞

2

1

π

1

1 + x2
dx .

We can find θ using the cdf of the Cauchy distribution. We have that
θ = 1− F (2) = 1/2− π−1 arctan 2 = 0.1476. We will now use simulation
methods to estimate θ and compare the variances of our estimators.

1.

f (x) =
1

π(1 + x2)
(Cauchy), ϕ(x) = 1{x>2}, θ̂ =

1

n

n∑
i=1

ϕ(Xi )

We thus generate n Cauchy values and θ̂: proportion of values > 2.
Then,

V[θ̂] =
θ(1− θ)

n
=

0.126

n

(
nθ̂ =

n∑
i=1

ϕ(Xi ) ∼ Bin(n, θ)
)
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Importance Sampling: Exercise (cont’d)

2.

θ =
1

2
P[|X | > 2], f (x) =

1

π(1 + x2)
, ϕ(x) = 1{|x|>2}

A moment’s reflection reveals that this trick is essentially using the
method of antithetic r.v.’s. Since the Cauchy distribution is
symmetric around zero, using −X as an anithetic variable we have

1

2

(
1{X > 2}+ 1{−X > 2}

)
=

1

2
1{|X | > 2}

We thus generate n Cauchy values and θ̂: 1/2 the proportion of
values > 2 in absolute value.

2nθ̂ ∼ Bin(n, 2θ) ⇒ V[2nθ̂] = n2θ(1− 2θ) ⇒ 4n2V[θ̂] = n2θ(1− 2θ)

⇒ V[θ̂] =
2θ(1− 2θ)

4n
≈ 0.052

n
(2.4 times reduction)
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Exercise (cont’d)

3.

1− 2θ =

∫ 2

−2

1

π(1 + x2)
dx = 2

∫ 2

0

1

π(1 + x2)
dx

⇒ θ =
1

2
−
∫ 2

0

1

π(1 + x2)
dx

To estimate the integral we take

f (x) =
1

2
, x ∈ (0, 2), i.e. the pdf of U(0, 2), ϕ(x) =

2

π(1 + x2)

We generate values X1, . . .Xn ∼ U(0, 2) and θ̂ = 1
2 − 1

n

∑n
i=1 ϕ(Xi )

V[θ̂] =
1

n
Vf [ϕ(X )] =

1

n

∫ 2

0

[ϕ(x)− ( 12 − θ)]2f (x)dx

=
1

2n

∫ 2

0

[
2

π(1 + x2)
− 0.3524

]2
dx =

0.028

n

(1.85 times further reduction)
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Exercise (cont’d)

4. Let y = x−1. Then,

θ =

∫ ∞

2

1

π

1

1 + x2
dx =

∫ 1/2

0

y−2

π(1 + y−2)
dy =

∫ 1/2

0

1

π(1 + y2)
dy

f (x) = 2, x ∈ (0, 1/2), i.e. the pdf of U(0, 1/2), ϕ(x) =
1

2[π(1 + x2)]

We generate values X1, . . .Xn ∼ U(0, 1/2) and θ̂ = 1
n

∑n
i=1 ϕ(Xi )

V[θ̂] =
2

n

∫ 1/2

0

[
1

2π(1 + x2)
− 0.1476

]2
dx =

0.0000955

n

(importance sampling → 293 times further reduction)
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Importance Sampling for Rare Events

One should always consider importance sampling techniques when
simulating rare events. For instance, let’s suppose we wish to estimate
the integral

I :=

∫ ∞

5

ex−
x2

2
dx√
2π

= EZ

[
eZ1{Z > 5}

]
, Z ∼ N(0, 1).

Because p = P[Z > 5] ≃ 2.87× 10−7, it would take roughly 1/p samples
to find one that contributes to the integral! Here, I ≃ 5.22× 10−5 and
V(θ̂) ≃ 1

100n . We need roughly 1.6× 109 samples for 10% accuracy.

With importance sampling, we try to make use of a variable that typically
takes values > 5, such as Y ∼ N (5, 1) for instance. Then:∫ ∞

5

ex−
x2

2
dx√
2π

= e25/2
∫ ∞

5

e−4xe−
(x−5)2

2
dx√
2π

= e25/2EY

[
e−4Y

1{Y > 5}
]
.

Now V(θ̂IS) ≃ 1.23×10−8

n . We need roughly 2000 samples for the same
accuracy, or even < 1000 if we use W = 5− Y as an antithetic r.v.
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Dependent R.V.’s

In several applications, instead of working with an independent
sample X1, . . .Xn we use the dependent ordered sample
X(1),X(2) . . .X(n). The simplest approach is to generate X1, . . .Xn

and subsequently sort them with the use of a sorting algorithm. (For
large n though, the computational cost is large.)
By using the inversion method
X(i) = F−1

X

(
U(i)

)
,U(1) < U(2) . . . < U(n), thus the problem is

transferred to the generation of ordered values from U(0, 1).
Method of sequence

U1, . . .Un independent sample U(0, 1). We set

U(n) = U1/n
n

U(n−1) = U(n) × U
1/(n−1)
n−1

...
...

U(k) = U(k+1) × U
1/k
k

...
...

U(1) = U(2) × U
1/1
1

Then, U(1), . . .U(n) ordered sample from U(0, 1).
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Multivariate Normal Distribution

X = (X1, . . .Xn) ∼ MVN(µ,V)

fX(x) = (2π)−n/2|V|−1/2 exp{−1

2
(x− µ)TV−1(x− µ)},

µ = (µ1, . . . µn)
T , Vn×n = (Vij)

E[Xi ] = µi , Vii = V[Xi ], Vij = Cov(Xi ,Xj)

Simulation of X is achieved by transforming it into a standard
multivariate normal distribution. We set

Y = L−1 (X− µ) ,where L (lower triangular) : LLT = V

Then Y ∼ MVN(0, In×n) ⇒ Yi ∼ N (0, 1), i = 1, . . . n
⇐

if independent

Thus, generating Y is simple. If we then set X = µ+ LY, we get values
from MVN(µ,V). To compute L → Cholesky (beware: the R function
chol() returns the upper triangular LT matrix)
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Travelling Salesman Problem

n cities and d(i , j): cost travelling from city i to city j . One salesman will
visit each city once. Which is the cheapest possible route?

There are n! possible routes and denote by c(x) the cost of the x route,
x ∈ {x1, x2, . . . xn!}

We would like to minimize c(x) with respect to x, and the complete
search is not possible (e.g. n = 100) (stochastic (or combinatorial)
optimization).

Trick: Define pλ(x) =
e−λc(x)∑
x e

−λc(x)
= Ke−λc(x)

Then, pλ(x) is a joint pmf in {x1, x2, . . . xn!}.

Note that for large λ, x with large c(x) give negligible pλ(x). Thus, the x
that are generated from pλ(x) for large λ are those x that minimize c(x)
(work with e−λc(x) ∝ pλ(x)).
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Rao-Blackwellization

What if we only care about EX [h(X )] when our sampling method
produces (X ,Y )? Naive method is to throw out Y and estimate the
expectation by δ = 1

n

∑n
i=1 h(Xi ).

e.g. Y are samples from g in rejection sampling and X are samples
that pass the acceptance test (X depends on Y and on some other
r.v.’s that are integrated out).

Rao-Blackwellization is a method to produce lower-variance using
the following formula (Law of Total Variance):

VX [δ] = EY

[
VX |Y [δ|Y ]

]
+ VY

[
EX |Y [δ|Y ]

]
⇒

VX [δ] ≥ VY

[
EX |Y [δ|Y ]

]
Thus if EX [h(X )] is the quantity we wish to estimate, then we can
use EX |Y [δ|Y ] instead of δ to produce better estimator (with lower
variance).

The two estimators have the same bias (Law of Total Expectation):

EX [δ] = EY

[
EX |Y [δ|Y ]

]
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Rao-Blackwellization (cont’d)

Let X be a random variable with pdf fX (x), x ∈ X and
X = (X1,X2 . . .Xn) be a random sample from fX (x). Let Y be
another random variable (on the same probability space as X ) with
pdf fY (y), y ∈ Y and Y = (Y1,Y2 . . .Yn) be a random sample from
fY (y).

Rao-Blackwellization means taking advantage of the fact that, if
T (X) is an estimator of θ = EX [h(X )] and if X can be simulated
from the joint distribution fX ,Y (x , y) satisfying∫

Y
fX ,Y (x , y)dy = fX (x),

then the new estimator T ∗(Y) = EX |Y [T (X)|Y] dominates T (X) in
terms of variance, while the bias is the same. Obviously, this result
is only useful in settings where T ∗(Y) can be explicitly computed.
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Rao-Blackwellization: Example

Consider computing the expectation of h(x) = exp(−x2) when
X ∼ St(ν, µ, σ2) (scaled Student distribution). If X ∼ St(ν, µ, σ2),
then:

X = µ+ σ
ϵ√
ξ
ν

, with ϵ ∼ N(0, 1) and ξ ∼ X 2
ν .

Even though the Student distribution can be simulated directly using
the function rt() in R, it allows for the marginal representation
above in terms of the joint distribution on (x , ξ), or, equivalently on
(x , y), where y = ξ/ν (∼ X 2

ν /ν ≡ Gamma(ν/2, ν/2)).

fX ,Y (x , y) =

√
y

√
2πσ2

exp

(
− (x − µ)2y

2σ2

)
(ν/2)ν/2

Γ(ν/2)
yν/2−1 exp(−yν/2)

= fX |Y (x |y) × fY (y)

= N(x |µ, σ2/y) × Gamma(y |ν/2, ν/2)

In R we produce a sample of (Xi ,Yi ):
> y = sqrt(rchisq(Nsim, df=nu)/nu)

> x = rnorm(Nsim, mu, sigma/y)
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Rao-Blackwellization: Example (cont’d)

In the above we use in the normal distribution the standard
deviation and not the variance (thus we take sample of

√
Y ).

Therefore the usual estimate

δn =
1

n

n∑
i=1

exp(−X 2
i )

can be improved using the Rao-Blackwellized version

δ∗n = EX |Y

[
n−1

n∑
i=1

exp(−X 2
i )|Yi

]
Xi i.i.d.=

call them X

1

n

n∑
i=1

EX |Y [exp(−X 2)|Yi ]

We can show that∫ +∞

−∞
N(x |µ1, σ

2
1)N(x |µ2, σ

2
2)dx = N(µ1|µ2, σ

2
1+σ

2
2) = N(µ2|µ1, σ

2
1+σ

2
2)
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Rao-Blackwellization: Example (cont’d)

Therefore

EX |Y [exp(−X 2)|y ] =
√
π

∫ +∞

−∞
N(x |0, 1/2)N(x |µ, σ

2

y )dx

= 1√
2σ2/y+1

exp
(
− µ2

2σ2/y+1

)
Thus

δ∗n =
1

n

n∑
i=1

1√
2σ2/Yi + 1

exp

(
− µ2

2σ2/Yi + 1

)
In R we type (we square

√
Y ):

> d_n=cumsum(exp(-x^2))/(1:Nsim)

> d_n_star=cumsum(exp(-mu^2/(1+2*(sigma/y)^2))/

sqrt(1+2*(sigma/y)^2))/(1:Nsim)
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Rao-Blackwellization: Example (cont’d)

For Nsim=10000 and (ν, µ, σ) = (5, 3, 0.5) we get
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Appendix 1

Let X ,Y ∼ N(0, 1), independent. Then the joint pdf of (X ,Y ) is

fX ,Y (x , y) =
1

2π
e−

x2+y2

2 , x , y ∈ R.

We define the following r.v.’s

R =
√

X 2 + Y 2, Θ = arctanY /X , R ∈ R+, Θ ∈ [0, 2π]

Then
x = r cos θ, y = r sin θ,

and

J(r , θ) =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r

Thus

fR,Θ(r , θ) = fX ,Y (r cos θ, r sin θ)|r | = re−
r2

2
1

2π

Therefore R,Θ independent and

R ∼ Rayleigh(1) and Θ ∼ U(0, 2π) ⇒ R2 ∼ Exp(1/2) ≡ X 2
2 and Θ ∼ U(0, 2π)
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